2011AMC12B真题及答案解析

2011 AMC12B 真题

答案解析请参考文末

Problem 1

What is$\frac{2+4+6}{1+3+5}-\frac{1+3+5}{2+4+6}?$

$\textbf{(A)}\ -1 \qquad \textbf{(B)}\ \frac{5}{36} \qquad \textbf{(C)}\ \frac{7}{12} \qquad \textbf{(D)}\ \frac{147}{60} \qquad \textbf{(E)}\ \frac{43}{3}$

 

Problem 2

Josanna's test scores to date are $90$, $80$, $70$, $60$, and $85$. Her goal is to raise her test average at least $3$ points with her next test. What is the minimum test score she would need to accomplish this goal?

$\textbf{(A)}\ 80 \qquad \textbf{(B)}\ 82 \qquad \textbf{(C)}\ 85 \qquad \textbf{(D)}\ 90 \qquad \textbf{(E)}\ 95$

 

Problem 3

LeRoy and Bernardo went on a week-long trip together and agreed to share the costs equally. Over the week, each of them paid for various joint expenses such as gasoline and car rental. At the end of the trip it turned out that LeRoy had paid $A$ dollars and Bernardo had paid $B$ dollars, where $A<B$. How many dollars must LeRoy give to Bernardo so that they share the costs equally?

$\textbf{(A)}\ \frac{A+B}{2} \qquad \textbf{(B)}\ \frac{A-B}{2} \qquad \textbf{(C)}\ \frac{B-A}{2} \qquad \textbf{(D)}\ B-A \qquad \textbf{(E)}\ A+B$

 

Problem 4

In multiplying two positive integers $a$ and $b$, Ron reversed the digits of the two-digit number $a$. His erroneous product was 161. What is the correct value of the product of $a$ and $b$?

$\textbf{(A)}\ 116 \qquad \textbf{(B)}\ 161 \qquad \textbf{(C)}\ 204 \qquad \textbf{(D)}\ 214 \qquad \textbf{(E)}\ 224$

 

Problem 5

Let $N$ be the second smallest positive integer that is divisible by every positive integer less than $7$. What is the sum of the digits of $N$?

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9$

 

Problem 6

Two tangents to a circle are drawn from a point $A$. The points of contact $B$ and $C$ divide the circle into arcs with lengths in the ratio $2 : 3$. What is the degree measure of $\angle{BAC}$?

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 36 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 60$

 

Problem 7

Let $x$ and $y$ be two-digit positive integers with mean $60$. What is the maximum value of the ratio $\frac{x}{y}$?

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac{33}{7} \qquad \textbf{(C)}\ \frac{39}{7} \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ \frac{99}{10}$

 

Problem 8

Keiko walks once around a track at exactly the same constant speed every day. The sides of the track are straight, and the ends are semicircles. The track has width $6$ meters, and it takes her $36$ seconds longer to walk around the outside edge of the track than around the inside edge. What is Keiko's speed in meters per second?

$\textbf{(A)}\ \frac{\pi}{3} \qquad \textbf{(B)}\ \frac{2\pi}{3} \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}{3} \qquad \textbf{(E)}\ \frac{5\pi}{3}$

 

Problem 9

Two real numbers are selected independently and at random from the interval $[-20,10]$. What is the probability that the product of those numbers is greater than zero?

$\textbf{(A)}\ \frac{1}{9} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{4}{9} \qquad \textbf{(D)}\ \frac{5}{9} \qquad \textbf{(E)}\ \frac{2}{3}$

 

Problem 10

Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD=\angle CMD$. What is the degree measure of $\angle AMD$?

$\textbf{(A)}\ 15 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 75$

 

Problem 11

A frog located at $(x,y)$, with both $x$ and $y$ integers, makes successive jumps of length $5$ and always lands on points with integer coordinates. Suppose that the frog starts at $(0,0)$ and ends at $(1,0)$. What is the smallest possible number of jumps the frog makes?

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

 

Problem 12

A dart board is a regular octagon divided into regions as shown below. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is the probability that the dart lands within the center square?

[asy] unitsize(10mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2)); draw(A--B--C--D--E--F--G--H--cycle); draw(A--D); draw(B--G); draw(C--F); draw(E--H);[/asy]

$\textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad \textbf{(B)}\ \frac{1}{4} \qquad \textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad \textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad \textbf{(E)}\ 2 - \sqrt{2}$

 

Problem 13

Brian writes down four integers $w > x > y > z$ whose sum is $44$. The pairwise positive differences of these numbers are $1, 3, 4, 5, 6$ and $9$. What is the sum of the possible values of $w$?

$\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 31 \qquad \textbf{(C)}\ 48 \qquad \textbf{(D)}\ 62 \qquad \textbf{(E)}\ 93$

 

Problem 14

A segment through the focus $F$ of a parabola with vertex $V$ is perpendicular to $\overline{FV}$ and intersects the parabola in points $A$ and $B$. What is $\cos\left(\angle AVB\right)$?

$\textbf{(A)}\ -\frac{3\sqrt{5}}{7} \qquad \textbf{(B)}\ -\frac{2\sqrt{5}}{5} \qquad \textbf{(C)}\ -\frac{4}{5} \qquad \textbf{(D)}\ -\frac{3}{5} \qquad \textbf{(E)}\ -\frac{1}{2}$

 

Problem 15

How many positive two-digit integers are factors of $2^{24}-1$?

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 14$

 

Problem 16

Rhombus $ABCD$ has side length $2$ and $\angle B = 120^{\circ}$. Region $R$ consists of all points inside of the rhombus that are closer to vertex $B$ than any of the other three vertices. What is the area of $R$?

$\textbf{(A)}\ \frac{\sqrt{3}}{3} \qquad \textbf{(B)}\ \frac{\sqrt{3}}{2} \qquad \textbf{(C)}\ \frac{2\sqrt{3}}{3} \qquad \textbf{(D)}\ 1 + \frac{\sqrt{3}}{3} \qquad \textbf{(E)}\ 2$

 

Problem 17

Let $f(x) = 10^{10x}, g(x) = \log_{10}\left(\frac{x}{10}\right), h_1(x) = g(f(x))$, and $h_n(x) = h_1(h_{n-1}(x))$ for integers $n \geq 2$. What is the sum of the digits of $h_{2011}(1)$?

$\textbf{(A)}\ 16081 \qquad \textbf{(B)}\ 16089 \qquad \textbf{(C)}\ 18089 \qquad \textbf{(D)}\ 18098 \qquad \textbf{(E)}\ 18099$

 

Problem 18

A pyramid has a square base with side of length 1 and has lateral faces that are equilateral triangles. A cube is placed within the pyramid so that one face is on the base of the pyramid and its opposite face has all its edges on the lateral faces of the pyramid. What is the volume of this cube?

$\textbf{(A)}\ 5\sqrt{2} - 7 \qquad \textbf{(B)}\ 7 - 4\sqrt{3} \qquad \textbf{(C)}\ \frac{2\sqrt{2}}{27} \qquad \textbf{(D)}\ \frac{\sqrt{2}}{9} \qquad \textbf{(E)}\ \frac{\sqrt{3}}{9}$

 

Problem 19

A lattice point in an $xy$-coordinate system is any point $(x, y)$ where both $x$ and $y$ are integers. The graph of $y = mx + 2$ passes through no lattice point with $0 < x \leq 100$ for all $m$ such that$\frac{1}{2} < m < a$. What is the maximum possible value of $a$?

$\textbf{(A)}\ \frac{51}{101} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{51}{100} \qquad \textbf{(D)}\ \frac{52}{101} \qquad \textbf{(E)}\ \frac{13}{25}$

 

Problem 20

Triangle $ABC$ has $AB = 13, BC = 14$, and $AC = 15$. The points $D, E$, and $F$ are the midpoints of $\overline{AB}, \overline{BC}$, and $\overline{AC}$ respectively. Let $X \not= E$ be the intersection of the circumcircles of $\Delta BDE$ and $\Delta CEF$. What is $XA + XB + XC$?

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}$

 

Problem 21

The arithmetic mean of two distinct positive integers $x$ and $y$ is a two-digit integer. The geometric mean of $x$ and $y$ is obtained by reversing the digits of the arithmetic mean. What is $|x - y|$?

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 48 \qquad \textbf{(C)}\ 54 \qquad \textbf{(D)}\ 66 \qquad \textbf{(E)}\ 70$

 

Problem 22

Let $T_1$ be a triangle with sides $2011, 2012$, and $2013$. For $n \geq 1$, if $T_n = \Delta ABC$ and $D, E$, and $F$ are the points of tangency of the incircle of $\Delta ABC$ to the sides $AB, BC$, and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD, BE$, and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $\left(T_n\right)$?

$\textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256}$

 

Problem 23

A bug travels in the coordinate plane, moving only along the lines that are parallel to the $x$-axis or $y$-axis. Let $A = (-3, 2)$ and $B = (3, -2)$. Consider all possible paths of the bug from $A$ to $B$ of length at most $20$. How many points with integer coordinates lie on at least one of these paths?

$\textbf{(A)}\ 161 \qquad \textbf{(B)}\ 185 \qquad \textbf{(C)}\ 195 \qquad \textbf{(D)}\ 227 \qquad \textbf{(E)}\ 255$

 

Problem 24

Let $P(z) = z^8 + \left(4\sqrt{3} + 6\right)z^4 - \left(4\sqrt{3} + 7\right)$. What is the minimum perimeter among all the $8$-sided polygons in the complex plane whose vertices are precisely the zeros of $P(z)$?

$\textbf{(A)}\ 4\sqrt{3} + 4 \qquad \textbf{(B)}\ 8\sqrt{2} \qquad \textbf{(C)}\ 3\sqrt{2} + 3\sqrt{6} \qquad \textbf{(D)}\ 4\sqrt{2} + 4\sqrt{3} \qquad \textbf{(E)}\ 4\sqrt{3} + 6$

 

Problem 25

For every $m$ and $k$ integers with $k$ odd, denote by $\left[\frac{m}{k}\right]$ the integer closest to $\frac{m}{k}$. For every odd integer $k$, let $P(k)$ be the probability that

\[\left[\frac{n}{k}\right] + \left[\frac{100 - n}{k}\right] = \left[\frac{100}{k}\right]\]

for an integer $n$ randomly chosen from the interval $1 \leq n \leq 99!$. What is the minimum possible value of $P(k)$ over the odd integers $k$ in the interval $1 \leq k \leq 99$?

$\textbf{(A)}\ \frac{1}{2} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{44}{87} \qquad \textbf{(D)}\ \frac{34}{67} \qquad \textbf{(E)}\ \frac{7}{13}$

 

 

 

请点击2011AMC12B答案查看选项答案

 


2011AMC12B详细解析请注册登录后查看:

 

以上解析方式仅供参考

更多详细解析方式,请联系小助手了解更多

 

关于翰林

翰林教育是一家涵盖各科目国际学术竞赛教辅(AMC/HiMCM/USACO/DECA)、国际课程辅导(IB/AP/Alevel/IGCSE)、国外著名夏校项目申请的专业国际教育培训机构。为广大学员家长提供高端本科研究生申请及就业咨询,有一对一等多种线上线下的教辅方式,为学员量身定制从9年级到研究生的权威全程国际竞赛方案。翰林拥有业内稀缺的竞赛资料和课程真题等珍贵的学术资源,国内课程辅导领域罕见的纯正海归精英教辅团队-翰林专业导师团-均有世界名校背景和欧美留学经历,都曾供职全球知名教育集团、国际学校,学术团队和世界500强公司了解更多翰林学院信息


AMC8/AMC10/AMC12/AIME

报名及辅导请联系