2013AMC10B真题与答案解析

2013AMC10B真题

答案解析请参考文末

Problem 1

What is $\frac{2+4+6}{1+3+5} - \frac{1+3+5}{2+4+6}$?

$\textbf{(A)}\ -1 \qquad\textbf{(B)}\ \frac{5}{36} \qquad\textbf{(C)}\ \frac{7}{12} \qquad\textbf{(D)}\ \frac{49}{20} \qquad\textbf{(E)}\ \frac{43}{3}$

 

Problem 2

Mr. Green measures his rectangular garden by walking two of the sides and finding that it is $15$steps by $20$ steps. Each of Mr. Green's steps is $2$ feet long. Mr. Green expects a half a pound of potatoes per square foot from his garden. How many pounds of potatoes does Mr. Green expect from his garden?

$\textbf{(A)}\ 600 \qquad\textbf{(B)}\ 800 \qquad\textbf{(C)}\ 1000 \qquad\textbf{(D)}\ 1200 \qquad\textbf{(E)}\ 1400$

 

Problem 3

On a particular January day, the high temperature in Lincoln, Nebraska, was $16$ degrees higher than the low temperature, and the average of the high and the low temperatures was $3\,^\circ$. In degrees, what was the low temperature in Lincoln that day?

$\textbf{(A)}\ -13\qquad\textbf{(B)}\ -8\qquad\textbf{(C)}\ -5\qquad\textbf{(D)}\ -3\qquad\textbf{(E)}\ 11$

 

Problem 4

When counting from $3$ to $201$, $53$ is the $51^\mathrm{st}$ number counted. When counting backwards from $201$ to $3$, $53$ is the $n^\mathrm{th}$ number counted. What is $n$?

$\textbf{(A)}\ 146\qquad\textbf{(B)}\ 147\qquad\textbf{(C)}\ 148\qquad\textbf{(D)}\ 149\qquad\textbf{(E)}\ 150$

 

Problem 5

Positive integers $a$ and $b$ are each less than $6$. What is the smallest possible value for $2 \cdot a - a \cdot b$?

$\textbf{(A)}\ -20\qquad\textbf{{(B)}}\ -15\qquad\textbf{{(C)}}\ -10\qquad\textbf{{(D)}}\ 0\qquad\textbf{{(E)}}\ 2$

 

Problem 6

The average age of 33 fifth-graders is 11. The average age of 55 of their parents is 33. What is the average age of all of these parents and fifth-graders?

$\textbf{(A)}\ 22\qquad\textbf{(B)}\ 23.25\qquad\textbf{(C)}\ 24.75\qquad\textbf{(D)}\ 26.25\qquad\textbf{(E)}\ 28$

 

Problem 7

Six points are equally spaced around a circle of radius 1. Three of these points are the vertices of a triangle that is neither equilateral nor isosceles. What is the area of this triangle?

$\textbf{(A)}\ \frac{\sqrt{3}}{3}\qquad\textbf{(B)}\ \frac{\sqrt{3}}{2}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ \sqrt{2}\qquad\textbf{(E)}\ \text{2}$

 

Problem 8

Ray's car averages 40 miles per gallon of gasoline, and Tom's car averages 10 miles per gallon of gasoline. Ray and Tom each drive the same number of miles. What is the cars' combined rate of miles per gallon of gasoline?

$\textbf{(A) }10\qquad\textbf{(B) }16\qquad\textbf{(C) }25\qquad\textbf{(D) }30\qquad\textbf{(E) }40$

 

Problem 9

Three positive integers are each greater than $1$, have a product of $27000$, and are pairwise relatively prime. What is their sum?

$\textbf{(A)}\ 100\qquad\textbf{(B)}\ 137\qquad\textbf{(C)}\ 156\qquad\textbf{(D)}\ 160\qquad\textbf{(E)}\ 165$

 

Problem 10

A basketball team's players were successful on 50% of their two-point shots and 40% of their three-point shots, which resulted in 54 points. They attempted 50% more two-point shots than three-point shots. How many three-point shots did they attempt?

$\textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }30$

 

Problem 11

Real numbers $x$ and $y$ satisfy the equation $x^2 + y^2 = 10x - 6y - 34$. What is $x+y$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 8$

 

Problem 12

Let $S$ be the set of sides and diagonals of a regular pentagon. A pair of elements of $S$ are selected at random without replacement. What is the probability that the two chosen segments have the same length?

$\textbf{(A) }\frac{2}5\qquad\textbf{(B) }\frac{4}9\qquad\textbf{(C) }\frac{1}2\qquad\textbf{(D) }\frac{5}9\qquad\textbf{(E) }\frac{4}5$

 

Problem 13

Jo and Blair take turns counting from $1$ to one more than the last number said by the other person. Jo starts by saying "$1$", so Blair follows by saying "$1, 2$" . Jo then says "$1, 2, 3$" , and so on. What is the 53rd number said?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8$

 

Problem 14

Define $a\clubsuit b=a^2b-ab^2$. Which of the following describes the set of points $(x, y)$ for which $x\clubsuit y=y\clubsuit x$?

$\textbf{(A)}\ \text{a finite set of points}\\ \qquad\textbf{(B)}\ \text{one line}\\ \qquad\textbf{(C)}\ \text{two parallel lines}\\ \qquad\textbf{(D)}\ \text{two intersecting lines}\\ \qquad\textbf{(E)}\ \text{three lines}$

 

Problem 15

A wire is cut into two pieces, one of length $a$ and the other of length $b$. The piece of length $a$is bent to form an equilateral triangle, and the piece of length $b$ is bent to form a regular hexagon. The triangle and the hexagon have equal area. What is $\frac{a}{b}$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{\sqrt{6}}{2}\qquad\textbf{(C)}\ \sqrt{3} \qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{3\sqrt{2}}{2}$

 

Problem 16

In triangle $ABC$, medians $AD$ and $CE$ intersect at $P$, $PE=1.5$, $PD=2$, and $DE=2.5$. What is the area of $AEDC$?

$\qquad\textbf{(A)}13\qquad\textbf{(B)}13.5\qquad\textbf{(C)}14\qquad\textbf{(D)}14.5\qquad\textbf{(E)}15\qquad$

 

Problem 17

Alex has $75$ red tokens and $75$ blue tokens. There is a booth where Alex can give two red tokens and receive in return a silver token and a blue token, and another booth where Alex can give three blue tokens and receive in return a silver token and a red token. Alex continues to exchange tokens until no more exchanges are possible. How many silver tokens will Alex have at the end?

$\textbf{(A)} 62 \qquad \textbf{(B)} 82 \qquad \textbf{(C)} 83 \qquad \textbf{(D)} 102 \qquad \textbf{(E)} 103$

 

Problem 18

The number $2013$ has the property that its units digit is the sum of its other digits, that is $2+0+1=3$. How many integers less than $2013$ but greater than $1000$ share this property?

$\textbf{(A)}\ 33\qquad\textbf{(B)}\ 34\qquad\textbf{(C)}\ 45\qquad\textbf{(D)}\ 46\qquad\textbf{(E)}\ 58$

 

Problem 19

The real numbers $c,b,a$ form an arithmetic sequence with $a\ge b\ge c\ge 0$. The quadratic $ax^2+bx+c$ has exactly one root. What is this root?

$\textbf{(A)}\ -7-4\sqrt{3}\qquad\textbf{(B)}\ -2-\sqrt{3}\qquad\textbf{(C)}\ -1\qquad\textbf{(D)}\ -2+\sqrt{3}\qquad\textbf{(E)}\ -7+4\sqrt{3}$

 

Problem 20

The number $2013$ is expressed in the form\[2013=\frac{a_1!a_2!\cdots a_m!}{b_1!b_2!\cdots b_n!},\]where $a_1\ge a_2\ge\cdots\ge a_m$ and $b_1\ge b_2\ge\cdots\ge b_n$ are positive integers and $a_1+b_1$ is as small as possible. What is $|a_1-b_1|$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

 

Problem 21

Two non-decreasing sequences of nonnegative integers have different first terms. Each sequence has the property that each term beginning with the third is the sum of the previous two terms, and the seventh term of each sequence is $N$. What is the smallest possible value of $N$?

$\textbf{(A)}\ 55 \qquad\textbf{(B)}\ 89 \qquad\textbf{(C)}\ 104 \qquad\textbf{(D)}\ 144 \qquad\textbf{(E)}\ 273$

 

Problem 22

The regular octagon $ABCDEFGH$ has its center at $J$. Each of the vertices and the center are to be associated with one of the digits $1$ through $9$, with each digit used once, in such a way that the sums of the numbers on the lines $AJE$, $BJF$, $CJG$, and $DJH$ are all equal. In how many ways can this be done?

$\textbf{(A)}\ 384 \qquad\textbf{(B)}\ 576 \qquad\textbf{(C)}\ 1152 \qquad\textbf{(D)}\ 1680 \qquad\textbf{(E)}\ 3456$

[asy] pair A,B,C,D,E,F,G,H,J; A=(20,20(2+sqrt(2))); B=(20(1+sqrt(2)),20(2+sqrt(2))); C=(20(2+sqrt(2)),20(1+sqrt(2))); D=(20(2+sqrt(2)),20); E=(20(1+sqrt(2)),0); F=(20,0); G=(0,20); H=(0,20(1+sqrt(2))); J=(10(2+sqrt(2)),10(2+sqrt(2))); draw(A--B); draw(B--C); draw(C--D); draw(D--E); draw(E--F); draw(F--G); draw(G--H); draw(H--A); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); dot(J); label("A",A,NNW); label("B",B,NNE); label("C",C,ENE); label("D",D,ESE); label("E",E,SSE); label("F",F,SSW); label("G",G,WSW); label("H",H,WNW); label("J",J,SE); [/asy]

Problem 23

In triangle $ABC$, $AB = 13$, $BC = 14$, and $CA = 15$. Distinct points $D$, $E$, and $F$ lie on segments $\overline{BC}$, $\overline{CA}$, and $\overline{DE}$, respectively, such that $\overline{AD} \perp \overline{BC}$, $\overline{DE} \perp \overline{AC}$, and $\overline{AF} \perp \overline{BF}$. The length of segment $\overline{DF}$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m + n$?

$\textbf{(A)}\ 18\qquad\textbf{(B)}\ 21\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 30$

 

Problem 24

A positive integer $n$ is nice if there is a positive integer $m$ with exactly four positive divisors (including $1$ and $m$) such that the sum of the four divisors is equal to $n$. How many numbers in the set $\{ 2010,2011,2012,\dotsc,2019 \}$ are nice?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5$

 

Problem 25

Bernardo chooses a three-digit positive integer $N$ and writes both its base-5 and base-6 representations on a blackboard. Later LeRoy sees the two numbers Bernardo has written. Treating the two numbers as base-10 integers, he adds them to obtain an integer $S$. For example, if $N = 749$, Bernardo writes the numbers $10,444$ and $3,245$, and LeRoy obtains the sum $S = 13,689$. For how many choices of $N$ are the two rightmost digits of $S$, in order, the same as those of $2N$?

$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 25$

2013AMC10B详细解析请注册登录后查看:

 

以上解析方式仅供参考

更多详细解析方式,请联系小助手了解更多

 


关于翰林

翰林教育是一家涵盖各科目国际学术竞赛教辅(AMC/HiMCM/USACO/DECA)、国际课程辅导(IB/AP/Alevel/IGCSE)、国外著名夏校项目申请的专业国际教育培训机构。为广大学员家长提供高端本科研究生申请及就业咨询,有一对一等多种线上线下的教辅方式,为学员量身定制从9年级到研究生的权威全程国际竞赛方案。翰林拥有业内稀缺的竞赛资料和课程真题等珍贵的学术资源,国内课程辅导领域罕见的纯正海归精英教辅团队-翰林专业导师团-均有世界名校背景和欧美留学经历,都曾供职全球知名教育集团、国际学校,学术团队和世界500强公司了解更多翰林学院信息

AMC8/AMC10/AMC12/AIME

相关咨询及辅导

欢迎扫码联系下方翰林竞赛顾问李老师