Edexcel IGCSE Maths 复习笔记 3.2.4 Functions - Domain, Range & Exclusions

Edexcel IGCSE Maths 复习笔记 3.2.4 Functions - Domain, Range & Exclusions

What are functions?

  • Functions are a formal way of writing mathematical expressions
    • eg. f(x) = 3x + 2 would be a linear function
    • eg2. g : x ⟼ x2 + 3x – 5 would be a quadratic function

     

 

3.2.4-DRE-Notes-fig1

 

 

What is the domain of a function?

  • The domain of a function is the values of x (the “input”) are allowed to take
  • For some functions, x cannot be certain values
    • eg. f(x) = 1 / xx cannot take the value 0

     

  • Other times we may choose to restrict the values of x
    • eg. The function g(x) = 5 – 2x2 is used to model the height of water throughout the day where x indicates timeIt may make sense to limit x so it only covers a 24 hour period

     

  • Inequalities are used to describe the values x can take
  • Any exclusions are usually indicated using the “not equal to” symbol ()

 

3.2.4-DRE-Notes-fig2

 

What is the range of a function?

  • The range of a function is the values of f (the “output”) that could occur
  • Some functions can never take certain values, regardless of the value of x
    • eg. f(x) = x2f, a squared (real) value, cannot be negative
    • eg2. g(x) = 1 / xg can never be zero (because numerator cannot be 0)

     

  • The range of a function can be influenced by its domain
  • As with the domain, inequalities are used to describe the values a function can take and “not equal to” () is used for any exclusions

 

 3.2.4-DRE-Notes-fig3

 

How do I solve problems involving the domain and range

3.2.4-DRE-Notes-fig4

 

  • You need to be able to identify and explain any exclusions in the domain of a function
  • You need to be able to deduce the range of a function from its expression and domain
  • You may also be asked to sketch a graph of a function
    • This could involve sketching parts of familiar graphs that are restricted because of the domain and exclusions

     

 

3.2.4-DRE-Notes-fig5

 

 

Domain and range of inverse functions

  • Make sure you are familiar with inverse functions, denoted by f-1g-1, etc.
  • The range of a function is the domain of the inverse function
  • The domain of a function is the range of the inverse function

 

3.2.4-DRE-Notes-fig6

Exam Tip

A graph of the function can help “see” both the domain and range of function, and a sketch can help if you have not been given a diagram.

Worked Example

3.2.4-DRE-Example-fig1-sol

转载自savemyexam

更多IGCSE课程
翰林国际教育资讯二维码