2021 AMC12B第25题解析!AMC12B最后一题解析

2021 AMC12B第25题解析!AMC10/12考试已经结束了,大家当前需要将重点放在试题解析上,为之后的考试做准备,下面就一起来看看最后一题是什么,以及我们应该如何解析。

Question 25

For n a positive integer, let R(n) be the sum of remainders when n is divided by 2,3,4,5,6,7,8,9,and10. For example, R(15)=1+0+3+0+3+1+7+6+5=26. How many two-digit positive integers n satisfy R(n)=R(n+1)?

首先我们考虑正整数n除以m的余数以及n+1除以m的余数,容易想到,后者要么比前者大1,要么比前者小m-1(此时n+1为m的倍数)。

情况1:

如果n是偶数,则n+1是奇数,那么对于所有偶数m来说,因为n+1不可能是m的倍数,所以n+1除以m的余数必然会比n除以m的余数大1,见下表:


为了使R(n)=R(n+1),只能取8个1和一个-8,但此时n+1是9的倍数,那也就是3的倍数,所以3为除数会产生-2而不是1,矛盾。这就说明,n不可能是偶数。

情况2:

如果n是奇数,则n+1是偶数,所以2为除数会产生-1。我们继续讨论,如果n+1是6的倍数,那么它也是3的倍数,这样会产生-2和-5,而另外几个数加起来最多是+6,这是配不平的;同理n+1也不能是8,9,10的倍数。这样,不确定的就只有除数为4和7的时候,见下表:


为了使R(n)=R(n+1),只能取一个-1,一个-6和7个1,此时n+1是2和7的倍数,也就是14的倍数,但不能是3,4,5,6,8,9,10的倍数。所以在100以内满足这些条件的n+1只有14和98,也就是n=13或97。答案选C。

总体来说,这次的25题没有往年那么难以想到或者计算量惊人,只要有一定的数论基础,加上细心和耐心就可以做出来。

还没有今年考试完整试题的,以及对试题内容感兴趣的,可以扫码免费领取,同时明年的AMC竞赛报名等信息,有问题可以咨询!

今年有望晋级的小伙伴,可以准备起明年的AIME复赛啦,今年没有考好的小伙伴,如果明年年龄没超的话可以继续再战。竞赛是一个长期积累的过程,千万不要临时抱佛脚,上课要及早哦!

翰林国际教育资讯二维码