1989 AMC8真题及答案详解

1989 AMC 8 真题

答案详细解析请参考文末

Problem 1

$(1+11+21+31+41)+(9+19+29+39+49)=$

$\text{(A)}\ 150 \qquad \text{(B)}\ 199 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 249 \qquad \text{(E)}\ 250$

Problem 2

$\frac{2}{10}+\frac{4}{100}+\frac{6}{1000} =$

$\text{(A)}\ .012 \qquad \text{(B)}\ .0246 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .246 \qquad \text{(E)}\ 246$

Problem 3

Which of the following numbers is the largest?

$\text{(A)}\ .99 \qquad \text{(B)}\ .9099 \qquad \text{(C)}\ .9 \qquad \text{(D)}\ .909 \qquad \text{(E)}\ .9009$

Problem 4

Estimate to determine which of the following numbers is closest to $\frac{401}{.205}$.

$\text{(A)}\ .2 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 20 \qquad \text{(D)}\ 200 \qquad \text{(E)}\ 2000$

Problem 5

$-15+9\times (6\div 3) =$

$\text{(A)}\ -48 \qquad \text{(B)}\ -12 \qquad \text{(C)}\ -3 \qquad \text{(D)}\ 3 \qquad \text{(E)}\ 12$

Problem 6

If the markings on the number line are equally spaced, what is the number $\text{y}$?

[asy] draw((-4,0)--(26,0),Arrows); for(int a=0; a<6; ++a) { draw((4a,-1)--(4a,1)); } label("0",(0,-1),S); label("20",(20,-1),S); label("y",(12,-1),S); [/asy]

$\text{(A)}\ 3 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 16$

Problem 7

If the value of $20$ quarters and $10$ dimes equals the value of $10$ quarters and $n$ dimes, then $n=$

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 35 \qquad \text{(E)}\ 45$

Problem 8

$(2\times 3\times 4)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) =$

$\text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 24 \qquad \text{(E)}\ 26$

Problem 9

There are $2$ boys for every $3$ girls in Ms. Johnson's math class. If there are $30$ students in her class, what percent of them are boys?

$\text{(A)}\ 12\% \qquad \text{(B)}\ 20\% \qquad \text{(C)}\ 40\% \qquad \text{(D)}\ 60\% \qquad \text{(E)}\ 66\frac{2}{3}\%$

Problem 10

What is the number of degrees in the smaller angle between the hour hand and the minute hand on a clock that reads seven o'clock?

$\text{(A)}\ 50^\circ \qquad \text{(B)}\ 120^\circ \qquad \text{(C)}\ 135^\circ \qquad \text{(D)}\ 150^\circ \qquad \text{(E)}\ 165^\circ$

Problem 11

Which of the five "T-like shapes" would be symmetric to the one shown with respect to the dashed line?

[asy] unitsize(48); for (int a=0; a<3; ++a) { fill((2a+1,1)--(2a+.8,1)--(2a+.8,.8)--(2a+1,.8)--cycle,black); } draw((.8,1)--(0,1)--(0,0)--(1,0)--(1,.8)); draw((2.8,1)--(2,1)--(2,0)--(3,0)--(3,.8)); draw((4.8,1)--(4,1)--(4,0)--(5,0)--(5,.8)); draw((.2,.4)--(.6,.8),linewidth(1)); draw((.4,.6)--(.8,.2),linewidth(1)); draw((2.4,.8)--(2.8,.4),linewidth(1)); draw((2.6,.6)--(2.2,.2),linewidth(1)); draw((4.4,.2)--(4.8,.6),linewidth(1)); draw((4.6,.4)--(4.2,.8),linewidth(1)); draw((7,.2)--(7,1)--(6,1)--(6,0)--(6.8,0)); fill((6.8,0)--(7,0)--(7,.2)--(6.8,.2)--cycle,black); draw((6.2,.6)--(6.6,.2),linewidth(1)); draw((6.4,.4)--(6.8,.8),linewidth(1)); draw((8,.8)--(8,0)--(9,0)--(9,1)--(8.2,1)); fill((8,1)--(8,.8)--(8.2,.8)--(8.2,1)--cycle,black); draw((8.4,.8)--(8.8,.8),linewidth(1)); draw((8.6,.8)--(8.6,.2),linewidth(1)); draw((6,1.2)--(6,1.4)); draw((6,1.6)--(6,1.8)); draw((6,2)--(6,2.2)); draw((6,2.4)--(6,2.6)); draw((6.4,2.2)--(6.4,1.4)--(7.4,1.4)--(7.4,2.4)--(6.6,2.4)); fill((6.4,2.4)--(6.4,2.2)--(6.6,2.2)--(6.6,2.4)--cycle,black); draw((6.6,1.8)--(7,2.2),linewidth(1)); draw((6.8,2)--(7.2,1.6),linewidth(1)); label("(A)",(0,1),W); label("(B)",(2,1),W); label("(C)",(4,1),W); label("(D)",(6,1),W); label("(E)",(8,1),W); [/asy]

Problem 12

$\frac{1-\frac{1}{3}}{1-\frac{1}{2}} =$

$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{2}{3} \qquad \text{(C)}\ \frac{3}{4} \qquad \text{(D)}\ \frac{3}{2} \qquad \text{(E)}\ \frac{4}{3}$

Problem 13

$\frac{9}{7\times 53} =$

$\text{(A)}\ \frac{.9}{.7\times 53} \qquad \text{(B)}\ \frac{.9}{.7\times .53} \qquad \text{(C)}\ \frac{.9}{.7\times 5.3} \qquad \text{(D)}\ \frac{.9}{7\times .53} \qquad \text{(E)}\ \frac{.09}{.07\times .53}$

Problem 14

When placing each of the digits $2,4,5,6,9$ in exactly one of the boxes of this subtraction problem, what is the smallest difference that is possible?

$\text{(A)}\ 58 \qquad \text{(B)}\ 123 \qquad \text{(C)}\ 149 \qquad \text{(D)}\ 171 \qquad \text{(E)}\ 176$

\[\begin{tabular}[t]{cccc} & \boxed{} & \boxed{} & \boxed{} \\ - & & \boxed{} & \boxed{} \\ \hline \end{tabular}\]

Problem 15

The area of the shaded region $\text{BEDC}$ in parallelogram $\text{ABCD}$ is

[asy] unitsize(10); pair A,B,C,D,E; A=origin; B=(4,8); C=(14,8); D=(10,0); E=(4,0); draw(A--B--C--D--cycle); fill(B--E--D--C--cycle,gray); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,S); label("$10$",(9,8),N); label("$6$",(7,0),S); label("$8$",(4,4),W); draw((3,0)--(3,1)--(4,1)); [/asy]

$\text{(A)}\ 24 \qquad \text{(B)}\ 48 \qquad \text{(C)}\ 60 \qquad \text{(D)}\ 64 \qquad \text{(E)}\ 80$

Problem 16

In how many ways can $47$ be written as the sum of two primes?

$\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 3 \qquad \text{(E)}\ \text{more than 3}$

Problem 17

The number $\text{N}$ is between $9$ and $17$. The average of $6$$10$, and $\text{N}$ could be

$\text{(A)}\ 8 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 14 \qquad \text{(E)}\ 16$

Problem 18

Many calculators have a reciprocal key $\boxed{\frac{1}{x}}$ that replaces the current number displayed with its reciprocal. For example, if the display is $\boxed{00004}$and the $\boxed{\frac{1}{x}}$ key is pressed, then the display becomes $\boxed{000.25}$. If $\boxed{00032}$ is currently displayed, what is the fewest positive number of times you must depress the $\boxed{\frac{1}{x}}$ key so the display again reads $\boxed{00032}$?

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$

Problem 19

The graph below shows the total accumulated dollars (in millions) spent by the Surf City government during $1988$. For example, about $.5$ million had been spent by the beginning of February and approximately $2$ million by the end of April. Approximately how many millions of dollars were spent during the summer months of June, July, and August?

$\text{(A)}\ 1.5 \qquad \text{(B)}\ 2.5 \qquad \text{(C)}\ 3.5 \qquad \text{(D)}\ 4.5 \qquad \text{(E)}\ 5.5$

[asy] unitsize(18); for (int a=1; a<13; ++a) { draw((a,0)--(a,.5)); } for (int b=1; b<6; ++b) { draw((-.5,2b)--(0,2b)); } draw((0,0)--(0,12)); draw((0,0)--(14,0)); draw((0,0)--(1,.9)--(2,1.9)--(3,2.6)--(4,4.3)--(5,4.5)--(6,5.7)--(7,8.2)--(8,9.4)--(9,9.8)--(10,10.1)--(11,10.2)--(12,10.5)); label("J",(.5,0),S); label("F",(1.5,0),S); label("M",(2.5,0),S); label("A",(3.5,0),S); label("M",(4.5,0),S); label("J",(5.5,0),S); label("J",(6.5,0),S); label("A",(7.5,0),S); label("S",(8.5,0),S); label("O",(9.5,0),S); label("N",(10.5,0),S); label("D",(11.5,0),S); label("month F=February",(16,0),S); label("$1$",(-.6,2),W); label("$2$",(-.6,4),W); label("$3$",(-.6,6),W); label("$4$",(-.6,8),W); label("$5$",(-.6,10),W); label("dollars in millions",(0,11.9),N); [/asy]

Problem 20

The figure may be folded along the lines shown to form a number cube. Three number faces come together at each corner of the cube. What is the largest sum of three numbers whose faces come together at a corner?

[asy] draw((0,0)--(0,1)--(1,1)--(1,2)--(2,2)--(2,1)--(4,1)--(4,0)--(2,0)--(2,-1)--(1,-1)--(1,0)--cycle); draw((1,0)--(1,1)--(2,1)--(2,0)--cycle); draw((3,1)--(3,0)); label("$1$",(1.5,1.25),N); label("$2$",(1.5,.25),N); label("$3$",(1.5,-.75),N); label("$4$",(2.5,.25),N); label("$5$",(3.5,.25),N); label("$6$",(.5,.25),N); [/asy]

$\text{(A)}\ 11 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 13 \qquad \text{(D)}\ 14 \qquad \text{(E)}\ 15$

Problem 21

Jack had a bag of $128$ apples. He sold $25\%$ of them to Jill. Next he sold $25\%$ of those remaining to June. Of those apples still in his bag, he gave the shiniest one to his teacher. How many apples did Jack have then?

$\text{(A)}\ 7 \qquad \text{(B)}\ 63 \qquad \text{(C)}\ 65 \qquad \text{(D)}\ 71 \qquad \text{(E)}\ 111$

Problem 22

The letters $\text{A}$$\text{J}$$\text{H}$$\text{S}$$\text{M}$$\text{E}$ and the digits $1$$9$$8$$9$ are "cycled" separately as follows and put together in a numbered list:\[\begin{tabular}[t]{lccc} & & AJHSME & 1989 \\ & & & \\ 1. & & JHSMEA & 9891 \\ 2. & & HSMEAJ & 8919 \\ 3. & & SMEAJH & 9198 \\ & & ........ & \end{tabular}\]

What is the number of the line on which $\text{AJHSME 1989}$ will appear for the first time?

$\text{(A)}\ 6 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 18 \qquad \text{(E)}\ 24$

Problem 23

An artist has $14$ cubes, each with an edge of $1$ meter. She stands them on the ground to form a sculpture as shown. She then paints the exposed surface of the sculpture. How many square meters does she paint?

$\text{(A)}\ 21 \qquad \text{(B)}\ 24 \qquad \text{(C)}\ 33 \qquad \text{(D)}\ 37 \qquad \text{(E)}\ 42$

[asy] draw((0,0)--(2.35,-.15)--(2.44,.81)--(.09,.96)--cycle); draw((.783333333,-.05)--(.873333333,.91)--(1.135,1.135)); draw((1.566666667,-.1)--(1.656666667,.86)--(1.89,1.1)); draw((2.35,-.15)--(4.3,1.5)--(4.39,2.46)--(2.44,.81)); draw((3,.4)--(3.09,1.36)--(2.61,1.4)); draw((3.65,.95)--(3.74,1.91)--(3.29,1.94)); draw((.09,.96)--(.76,1.49)--(.71,1.17)--(2.2,1.1)--(3.6,2.2)--(3.62,2.52)--(4.39,2.46)); draw((.76,1.49)--(.82,1.96)--(2.28,1.89)--(2.2,1.1)); draw((2.28,1.89)--(3.68,2.99)--(3.62,2.52)); draw((1.455,1.135)--(1.55,1.925)--(1.89,2.26)); draw((2.5,2.48)--(2.98,2.44)--(2.9,1.65)); draw((.82,1.96)--(1.55,2.6)--(1.51,2.3)--(2.2,2.26)--(2.9,2.8)--(2.93,3.05)--(3.68,2.99)); draw((1.55,2.6)--(1.59,3.09)--(2.28,3.05)--(2.2,2.26)); draw((2.28,3.05)--(2.98,3.59)--(2.93,3.05)); draw((1.59,3.09)--(2.29,3.63)--(2.98,3.59)); [/asy]

Problem 24

Suppose a square piece of paper is folded in half vertically. The folded paper is then cut in half along the dashed line. Three rectangles are formed-a large one and two small ones. What is the ratio of the perimeter of one of the small rectangles to the perimeter of the large rectangle?

$\text{(A)}\ \frac{1}{2} \qquad \text{(B)}\ \frac{2}{3} \qquad \text{(C)}\ \frac{3}{4} \qquad \text{(D)}\ \frac{4}{5} \qquad \text{(E)}\ \frac{5}{6}$

[asy] draw((0,0)--(0,8)--(6,8)--(6,0)--cycle); draw((0,8)--(5,9)--(5,8)); draw((3,-1.5)--(3,10.3),dashed); draw((0,5.5)..(-.75,4.75)..(0,4)); draw((0,4)--(1.5,4),EndArrow); [/asy]

Problem 25

Every time these two wheels are spun, two numbers are selected by the pointers. What is the probability that the sum of the two selected numbers is even?

$\text{(A)}\ \frac{1}{6} \qquad \text{(B)}\ \frac{3}{7} \qquad \text{(C)}\ \frac{1}{2} \qquad \text{(D)}\ \frac{2}{3} \qquad \text{(E)}\ \frac{5}{7}$

[asy] unitsize(36); draw(circle((-3,0),1)); draw(circle((0,0),1)); draw((0,0)--dir(30)); draw((0,0)--(0,-1)); draw((0,0)--dir(150)); draw((-2.293,.707)--(-3.707,-.707)); draw((-2.293,-.707)--(-3.707,.707)); fill((-2.9,1)--(-2.65,1.25)--(-2.65,1.6)--(-3.35,1.6)--(-3.35,1.25)--(-3.1,1)--cycle,black); fill((.1,1)--(.35,1.25)--(.35,1.6)--(-.35,1.6)--(-.35,1.25)--(-.1,1)--cycle,black); label("$5$",(-3,.2),N); label("$3$",(-3.2,0),W); label("$4$",(-3,-.2),S); label("$8$",(-2.8,0),E); label("$6$",(0,.2),N); label("$9$",(-.2,.1),SW); label("$7$",(.2,.1),SE); [/asy]


1989 AMC8真答案详细解析请注册登录后查看:

以上解析方式仅供参考

更多详细解析方式,请联系小助手了解更多

 

AMC8/AMC10/AMC12/AIME

相关咨询及辅导

欢迎扫码联系下方翰林竞赛顾问晏老师

翰林国际教育升学顾问李老师




翰林国际教育资讯二维码