2018英特尔ISEF获奖作品摘要 计算生物与生物信息学 Intel Finalist Abstract Computational Biology and Bioinformatics

获奖作品基本信息

年份 2018
学科 计算生物与生物信息学 Computational Biology and Bioinformatics
国家/州 United States of America

获奖作品名称

Optimization of Seizure Detection Using the Machine Learning Algorithm SVM

获奖作品摘要

Epilepsy is a very common and devastating neurological disorder that affects 65 million people globally.  Electroencephalography (EEG) recording is an essential tool in evaluating seizure activity, critical for epilepsy drug development and patient care. However, due to the random and low frequency of seizures, seizure evaluation requires continuous, long-term EEG monitoring for weeks and months, producing huge volumes of data. This creates a formidable challenge for real-time tracking of seizures using wearable devices which have low computational power. Current algorithms for automating EEG seizure classification use computationally expensive methods to analyze minute features within small fragments of seizure events. However, despite this complexity, current algorithms still underperform, and laboratory technicians and clinical physicians alike still do not fully rely on these algorithms, opting to manually sift through thousands of hours of EEG data. Human visual analysis still drastically outperforms computer analysis. The proposed method in this study attempts to mimic the simplistic analysis of human vision for EEG seizure classification by focusing on broad, global trends in condensed EEG seizure data. EEG seizure clips were normalized and processed through a rolling mean function, producing smoothed EEG clips that represent the global shape of each clip. These signals were then directly inputted for machine training. This method achieved an accuracy rate of approximately 98.51%. Our approach provides an unique advantage in patient epilepsy management using wearables, where accuracy, computational cost, and speed are all critical to improving patient quality of life.


高中生科研 英特尔 Intel ISEF
资讯 · 课程 · 全程指导
请扫码添加微信好友

有方科研教育背景提升


ISEF 简介

英特尔国际科学与工程大奖赛,简称 "ISEF",由美国 Society for Science and the Public(科学和公共服务协会)主办,英特尔公司冠名赞助,是全球规模最大、等级最高的中学生的科研科创赛事。ISEF 的竞赛学科包括了所有数学、自然科学、工程的全部领域和部分社会科学。ISEF 素有全球青少年科学竞赛的“世界杯”之美誉,旨在鼓励学生团队协作,开拓创新,长期专一深入地研究自己感兴趣的课题。

>>> 实用链接汇总 <<<

英特尔 ISEF 竞赛详细介绍

英特尔 ISEF 全程指导方案

· 数学 · 物理 · 化学 · 生物 · 计算机 · 工程 ·

学科简介:计算生物与生物信息学 Computational Biology and Bioinformatics

Studies that primarily focus on the discipline and techniques of computer science and mathematics as they relate to biological systems. This includes the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavior, and social systems.

Subcategories:

Computational Biomodeling (MOD): Studies that involve computer simulations of biological systems most commonly with a goal of understanding how cells or organism develop, work collectively and survive.

Computational Epidemiology (EPD): The study of disease frequency and distribution, and risk factors and socioeconomic determinants of health within populations. Such studies may include gathering information to confirm existence of disease outbreaks, developing case definitions and analyzing epidemic data, establishing disease surveillance, and implementing methods of disease prevention and control.

Computational Evolutionary Biology (EVO): A study that applies the discipline and techniques of computer science and mathematics to explore the processes of change in populations of organisms, especially taxonomy, paleontology, ethology, population genetics and ecology.

Computational Neuroscience (NEU): A study that applies the discipline and techniques of computer science and mathematics to understand brain function in terms of the information processing properties of the structures that make up the nervous system.

Computational Pharmacology (PHA): A study that applies the discipline and techniques of computer science and mathematics to predict and analyze the responses to drugs.

Genomics (GEN): The study of the function and structure of genomes using recombinant DNA, sequencing, and bioinformatics.

Other (OTH)Studies that cannot be assigned to one of the above subcategories. If the project involves multiple subcategories, the principal subcategory should be chosen instead of Other.

翰林国际教育资讯二维码