2010 USAMO Problems真题及答案

2010 USAMO Problems真题及答案

完整版真题免费下载

+答案解析请参考文末

Day 1

Problem 1

Let $AXYZB$ be a convex pentagon inscribed in a semicircle of diameter $AB$. Denote by $P$$Q$$R$$S$ the feet of the perpendiculars from $Y$onto lines $AX$$BX$$AZ$$BZ$, respectively. Prove that the acute angle formed by lines $PQ$ and $RS$ is half the size of $\angle XOZ$, where $O$ is the midpoint of segment $AB$.

 

Problem 2

There are $n$ students standing in a circle, one behind the other. The students have heights $h_1<h_2<\dots <h_n$. If a student with height $h_k$ is standing directly behind a student with height $h_{k-2}$ or less, the two students are permitted to switch places. Prove that it is not possible to make more than $\binom{n}{3}$ such switches before reaching a position in which no further switches are possible.

 

Problem 3

The 2010 positive numbers $a_1, a_2, \ldots , a_{2010}$ satisfy the inequality $a_ia_j\leq i+j$ for all distinct indices $i, j$. Determine, with proof, the largest possible value of the product $a_1a_2\ldots a_{2010}$.

 

Day 2

Problem 4

Let $ABC$ be a triangle with $\angle A=90^{\circ}$. Points $D$ and $E$ lie on sides $AC$ and $AB$, respectively, such that $\angle ABD=\angle DBC$ and $\angle ACE=\angle ECB$. Segments $BD$ and $CE$ meet at $I$. Determine whether or not it is possible for segments $AB$$AC$$BI$$ID$$CI$$IE$ to all have integer side lengths.

 

Problem 5

Let $q = \dfrac{3p-5}{2}$ where $p$ is an odd prime, and let

\[S_q = \frac{1}{2\cdot 3 \cdot 4} + \frac{1}{5\cdot 6 \cdot 7} + \cdots + \frac{1}{q\cdot (q+1) \cdot (q+2)}.\]Prove that if $\dfrac{1}{p}-2S_q = \dfrac{m}{n}$ for relatively prime integers $m$ and $n$, then $m-n$ is divisible by $p$.

 

Problem 6

A blackboard contains 68 pairs of nonzero integers. Suppose that for each positive integer $k$ at most one of the pairs $(k, k)$ and $(-k, -k)$ is written on the blackboard. A student erases some of the 136 integers, subject to the condition that no two erased integers may add to 0. The student then scores one point for each of the 68 pairs in which at least one integer is erased. Determine, with proof, the largest number $N$ of points that the student can guarantee to score regardless of which 68 pairs have been written on the board.

 

完整版2010USAMO真题pdf版本免费下载

注册登录可见:

2010USAMO真题参考答案及详解

翰林学院公众号
此处内容已经被作者无情的隐藏,请输入验证码查看内容
验证码:
请关注“上海翰林学院”官方微信公众号,回复关键字“usamo”,获取验证码。如失效请联系我们任意一位客服或小助手。

AMC8/AMC10/AMC12/AIME

报名及辅导请联系