2011 USAMO Problems真题及答案

2011 USAMO Problems真题及答案

完整版真题免费下载

+答案解析请参考文末

Day 1

Problem 1

Let $a$$b$$c$ be positive real numbers such that $a^2 + b^2 + c^2 + (a + b + c)^2 \le 4$. Prove that\[\frac{ab + 1}{(a + b)^2} + \frac{bc + 1}{(b + c)^2} + \frac{ca + 1}{(c + a)^2} \ge 3.\]

 

Problem 2

An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an integer $m$ from each of the integers at two neighboring vertices and adding $2m$ to the opposite vertex, which is not adjacent to either of the first two vertices. (The amount $m$ and the vertices chosen can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns, that vertex has the number 2011 and the other four vertices have the number 0. Prove that for any choice of the initial integers, there is exactly one vertex at which the game can be won.

 

Problem 3

In hexagon $ABCDEF$, which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy $\angle A = 3 \angle D$$\angle C = 3 \angle F$, and $\angle E = 3 \angle B$. Furthermore, $AB = DE$$BC = EF$, and $CD = FA$. Prove that diagonals $\overline{AD}$$\overline{BE}$, and $\overline{CF}$ are concurrent.

 

Day 2

Problem 4

Consider the assertion that for each positive integer $n \ge 2$, the remainder upon dividing $2^{2^n}$ by $2^n - 1$ is a power of 4. Either prove the assertion or find (with proof) a counterexample.

 

Problem 5

Let $P$ be a given point inside quadrilateral $ABCD$. Points $Q_1$ and $Q_2$ are located within $ABCD$ such that $\angle Q_1 BC = \angle ABP$$\angle Q_1 CB = \angle DCP$$\angle Q_2 AD = \angle BAP$$\angle Q_2 DA = \angle CDP$. Prove that $\overline{Q_1 Q_2} \parallel \overline{BA}$ if and only if $\overline{Q_1 Q_2} \parallel \overline{CD}$.

 

Problem 6

Let $A$ be a set with $|A| = 225$, meaning that $A$ has 225 elements. Suppose further that there are eleven subsets $A_1$$\dots$$A_{11}$ of $A$ such that $|A_i | = 45$ for $1 \le i \le 11$ and $|A_i \cap A_j| = 9$ for $1 \le i < j \le 11$. Prove that $|A_1 \cup A_2 \cup \dots \cup A_{11}| \ge 165$, and give an example for which equality holds.

 

完整版2011USAMO真题pdf版本免费下载

注册登录可见:

2011USAMO真题参考答案及详解

翰林学院公众号
此处内容已经被作者无情的隐藏,请输入验证码查看内容
验证码:
请关注“上海翰林学院”官方微信公众号,回复关键字“usamo”,获取验证码。如失效请联系我们任意一位客服或小助手。

AMC8/AMC10/AMC12/AIME

报名及辅导请联系