2016 USAMO Problems真题及答案

2016 USAMO Problems真题及答案

完整版真题免费下载

+答案解析请参考文末

Day 1

Problem 1

Let $X_1, X_2, \ldots, X_{100}$ be a sequence of mutually distinct nonempty subsets of a set $S$. Any two sets $X_i$ and $X_{i+1}$ are disjoint and their union is not the whole set $S$, that is, $X_i\cap X_{i+1}=\emptyset$ and $X_i\cup X_{i+1}\neq S$, for all $i\in\{1, \ldots, 99\}$. Find the smallest possible number of elements in $S$.

 

Problem 2

Prove that for any positive integer $k,$\[\left(k^2\right)!\cdot\prod_{j=0}^{k-1}\frac{j!}{\left(j+k\right)!}\]is an integer.

 

Problem 3

Let $\triangle ABC$ be an acute triangle, and let $I_B, I_C,$ and $O$ denote its $B$-excenter, $C$-excenter, and circumcenter, respectively. Points $E$ and $Y$ are selected on $\overline{AC}$ such that $\angle ABY = \angle CBY$ and $\overline{BE}\perp\overline{AC}.$ Similarly, points $F$ and $Z$ are selected on $\overline{AB}$ such that $\angle ACZ = \angle BCZ$and $\overline{CF}\perp\overline{AB}.$

Lines $\overleftrightarrow{I_B F}$ and $\overleftrightarrow{I_C E}$ meet at $P.$ Prove that $\overline{PO}$ and $\overline{YZ}$ are perpendicular.

 

Day 2

Problem 4

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all real numbers $x$ and $y$,\[(f(x)+xy)\cdot f(x-3y)+(f(y)+xy)\cdot f(3x-y)=(f(x+y))^2.\]

 

Problem 5

An equilateral pentagon $AMNPQ$ is inscribed in triangle $ABC$ such that $M\in\overline{AB},$ $Q\in\overline{AC},$ and $N, P\in\overline{BC}.$ Let $S$ be the intersection of $\overleftrightarrow{MN}$ and $\overleftrightarrow{PQ}.$ Denote by $\ell$ the angle bisector of $\angle MSQ.$

Prove that $\overline{OI}$ is parallel to $\ell,$ where $O$ is the circumcenter of triangle $ABC,$ and $I$ is the incenter of triangle $ABC.$

 

Problem 6

Integers $n$ and $k$ are given, with $n\ge k\ge 2.$ You play the following game against an evil wizard.

The wizard has $2n$ cards; for each $i = 1, ..., n,$ there are two cards labeled $i.$ Initially, the wizard places all cards face down in a row, in unknown order.

You may repeatedly make moves of the following form: you point to any $k$ of the cards. The wizard then turns those cards face up. If any two of the cards match, the game is over and you win. Otherwise, you must look away, while the wizard arbitrarily permutes the $k$ chosen cards and turns them back face-down. Then, it is your turn again.

We say this game is $\textit{winnable}$ if there exist some positive integer $m$ and some strategy that is guaranteed to win in at most $m$ moves, no matter how the wizard responds.

For which values of $n$ and $k$ is the game winnable?

 

完整版2016USAMO真题pdf版本免费下载

注册登录可见:

2016USAMO真题参考答案及详解

翰林学院公众号
此处内容已经被作者无情的隐藏,请输入验证码查看内容
验证码:
请关注“上海翰林学院”官方微信公众号,回复关键字“usamo”,获取验证码。如失效请联系我们任意一位客服或小助手。

AMC8/AMC10/AMC12/AIME

报名及辅导请联系